Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
PLoS One ; 17(6): e0270060, 2022.
Article in English | MEDLINE | ID: covidwho-2021817

ABSTRACT

BACKGROUND: An ideal test for COVID-19 would combine the sensitivity of laboratory-based PCR with the speed and ease of use of point-of-care (POC) or home-based rapid antigen testing. We evaluated clinical performance of the Diagnostic Analyzer for Selective Hybridization (DASH) SARS-CoV-2 POC rapid PCR test. METHODS: We conducted a cross-sectional study of adults with and without symptoms of COVID-19 at four clinical sites where we collected two bilateral anterior nasal swabs and information on COVID-19 symptoms, vaccination, and exposure. One swab was tested with the DASH SARS-CoV-2 POC PCR and the second in a central laboratory using Cepheid Xpert Xpress SARS-CoV-2 PCR. We assessed test concordance and calculated sensitivity, specificity, negative and positive predictive values using Xpert as the "gold standard". RESULTS: We enrolled 315 and analyzed 313 participants with median age 42 years; 65% were female, 62% symptomatic, 75% had received ≥2 doses of mRNA COVID-19 vaccine, and 16% currently SARS-CoV-2 positive. There were concordant results for 307 tests indicating an overall agreement for DASH of 0.98 [95% CI 0.96, 0.99] compared to Xpert. DASH performed at 0.96 [95% CI 0.86, 1.00] sensitivity and 0.98 [95% CI 0.96, 1.00] specificity, with a positive predictive value of 0.85 [95% CI 0.73, 0.96] and negative predictive value of 0.996 [95% CI 0.99, 1.00]. The six discordant tests between DASH and Xpert all had high Ct values (>30) on the respective positive assay. DASH and Xpert Ct values were highly correlated (R = 0.89 [95% CI 0.81, 0.94]). CONCLUSIONS: DASH POC SARS-CoV-2 PCR was accurate, easy to use, and provided fast results (approximately 15 minutes) in real-life clinical settings with an overall performance similar to an EUA-approved laboratory-based PCR.


Subject(s)
COVID-19 , Adult , COVID-19/diagnosis , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/methods , Cross-Sectional Studies , Female , Humans , Male , Point-of-Care Systems , Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
2.
Antimicrob Steward Healthc Epidemiol ; 2(1)2022.
Article in English | MEDLINE | ID: covidwho-1860203

ABSTRACT

We assessed the prevalence of antibiotic prescriptions among ambulatory patients tested for coronavirus disease 2019 (COVID-19) in a large public US healthcare system and found a low overall rate of antibiotic prescriptions (6.7%). Only 3.8% of positive severe acute respiratory coronavirus virus 2 (SARS-CoV-2) tests were associated with an antibiotic prescription within 7 days.

3.
Lancet Infect Dis ; 22(4): 507-518, 2022 04.
Article in English | MEDLINE | ID: covidwho-1839425

ABSTRACT

BACKGROUND: The WHO-recommended tuberculosis screening and diagnostic algorithm in ambulatory people living with HIV is a four-symptom screen (known as the WHO-recommended four symptom screen [W4SS]) followed by a WHO-recommended molecular rapid diagnostic test (eg Xpert MTB/RIF [hereafter referred to as Xpert]) if W4SS is positive. To inform updated WHO guidelines, we aimed to assess the diagnostic accuracy of alternative screening tests and strategies for tuberculosis in this population. METHODS: In this systematic review and individual participant data meta-analysis, we updated a search of PubMed (MEDLINE), Embase, the Cochrane Library, and conference abstracts for publications from Jan 1, 2011, to March 12, 2018, done in a previous systematic review to include the period up to Aug 2, 2019. We screened the reference lists of identified pieces and contacted experts in the field. We included prospective cross-sectional, observational studies and randomised trials among adult and adolescent (age ≥10 years) ambulatory people living with HIV, irrespective of signs and symptoms of tuberculosis. We extracted study-level data using a standardised data extraction form, and we requested individual participant data from study authors. We aimed to compare the W4SS with alternative screening tests and strategies and the WHO-recommended algorithm (ie, W4SS followed by Xpert) with Xpert for all in terms of diagnostic accuracy (sensitivity and specificity), overall and in key subgroups (eg, by antiretroviral therapy [ART] status). The reference standard was culture. This study is registered with PROSPERO, CRD42020155895. FINDINGS: We identified 25 studies, and obtained data from 22 studies (including 15 666 participants; 4347 [27·7%] of 15 663 participants with data were on ART). W4SS sensitivity was 82% (95% CI 72-89) and specificity was 42% (29-57). C-reactive protein (≥10 mg/L) had similar sensitivity to (77% [61-88]), but higher specificity (74% [61-83]; n=3571) than, W4SS. Cough (lasting ≥2 weeks), haemoglobin (<10 g/dL), body-mass index (<18·5 kg/m2), and lymphadenopathy had high specificities (80-90%) but low sensitivities (29-43%). The WHO-recommended algorithm had a sensitivity of 58% (50-66) and a specificity of 99% (98-100); Xpert for all had a sensitivity of 68% (57-76) and a specificity of 99% (98-99). In the one study that assessed both, the sensitivity of sputum Xpert Ultra was higher than sputum Xpert (73% [62-81] vs 57% [47-67]) and specificities were similar (98% [96-98] vs 99% [98-100]). Among outpatients on ART (4309 [99·1%] of 4347 people on ART), W4SS sensitivity was 53% (35-71) and specificity was 71% (51-85). In this population, a parallel strategy (two tests done at the same time) of W4SS with any chest x-ray abnormality had higher sensitivity (89% [70-97]) and lower specificity (33% [17-54]; n=2670) than W4SS alone; at a tuberculosis prevalence of 5%, this strategy would require 379 more rapid diagnostic tests per 1000 people living with HIV than W4SS but detect 18 more tuberculosis cases. Among outpatients not on ART (11 160 [71·8%] of 15 541 outpatients), W4SS sensitivity was 85% (76-91) and specificity was 37% (25-51). C-reactive protein (≥10 mg/L) alone had a similar sensitivity to (83% [79-86]), but higher specificity (67% [60-73]; n=3187) than, W4SS and a sequential strategy (both test positive) of W4SS then C-reactive protein (≥5 mg/L) had a similar sensitivity to (84% [75-90]), but higher specificity than (64% [57-71]; n=3187), W4SS alone; at 10% tuberculosis prevalence, these strategies would require 272 and 244 fewer rapid diagnostic tests per 1000 people living with HIV than W4SS but miss two and one more tuberculosis cases, respectively. INTERPRETATION: C-reactive protein reduces the need for further rapid diagnostic tests without compromising sensitivity and has been included in the updated WHO tuberculosis screening guidelines. However, C-reactive protein data were scarce for outpatients on ART, necessitating future research regarding the utility of C-reactive protein in this group. Chest x-ray can be useful in outpatients on ART when combined with W4SS. The WHO-recommended algorithm has suboptimal sensitivity; Xpert for all offers slight sensitivity gains and would have major resource implications. FUNDING: World Health Organization.


Subject(s)
Antibiotics, Antitubercular , HIV Infections , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Adolescent , Adult , Antibiotics, Antitubercular/therapeutic use , Child , Cross-Sectional Studies , HIV Infections/complications , HIV Infections/drug therapy , Humans , Prospective Studies , Rifampin , Sensitivity and Specificity , Tuberculosis/diagnosis , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/drug therapy
4.
Cell Rep Methods ; 2(5): 100222, 2022 May 23.
Article in English | MEDLINE | ID: covidwho-1819464

ABSTRACT

During the COVID-19 pandemic, the development of point-of-care (POC) diagnostic testing accelerated in an unparalleled fashion. As a result, there has been an increased need for accurate, robust, and easy-to-use POC testing in a variety of non-traditional settings (i.e., pharmacies, drive-thru sites, schools). While stakeholders often express the desire for POC technologies that are "as simple as digital pregnancy tests," there is little discussion of what this means in regards to device design, development, and assessment. The design of POC technologies and systems should take into account the capabilities and limitations of the users and their environments. Such "human factors" are important tenets that can help technology developers create POC technologies that are effective for end-users in a multitude of settings. Here, we review the core principles of human factors and discuss lessons learned during the evaluation process of SARS-CoV-2 POC testing.

5.
Am J Med Sci ; 364(3): 296-303, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1797253

ABSTRACT

BACKGROUND: Estimates of the prevalence of SARS-CoV-2 antibodies and factors associated with infection among healthcare personnel (HCP) vary widely. We conducted a serosurvey of HCP at a large public healthcare system in the Atlanta area. MATERIALS AND METHODS: All employees of Grady Health System were invited to participate in mid-2020; a volunteer sample of those completing testing was included. Asymptomatic HCP were offered testing for IgG antibody and for SARS-CoV-2 RNA using polymerase chain reaction (PCR). Symptomatic HCP were offered PCR testing. Antibody index values for IgG and cycle threshold values for PCR were evaluated for those with a positive result. An online survey was distributed at the time of testing. RESULTS: 624 of 1677 distributed surveys (37.2%) were completed by 608 unique HCP. The majority were female (76.4%) and provided clinical care (70.9%). The most common occupations were clinician (24.8%) and nurse (23.5%). 37 of 608 (6.1%) HCP had detectable IgG. Exposure to a confirmed case of COVID-19 outside of the hospital was associated with detectable IgG (12.8% vs 4.4%, p = 0.02), but exposure to a patient with COVID-19 was not. CONCLUSIONS: Among HCP in a large healthcare system, 6.1% had detectable SARS-CoV-2 IgG. Seropositivity was associated with exposures outside of the healthcare setting.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , Delivery of Health Care , Female , Health Personnel , Humans , Immunoglobulin G , Male , RNA, Viral , Seroepidemiologic Studies
6.
PLoS Pathog ; 17(9): e1009941, 2021 09.
Article in English | MEDLINE | ID: covidwho-1470669

ABSTRACT

The metabolic signaling pathways that drive pathologic tissue inflammation and damage in humans with pulmonary tuberculosis (TB) are not well understood. Using combined methods in plasma high-resolution metabolomics, lipidomics and cytokine profiling from a multicohort study of humans with pulmonary TB disease, we discovered that IL-1ß-mediated inflammatory signaling was closely associated with TCA cycle remodeling, characterized by accumulation of the proinflammatory metabolite succinate and decreased concentrations of the anti-inflammatory metabolite itaconate. This inflammatory metabolic response was particularly active in persons with multidrug-resistant (MDR)-TB that received at least 2 months of ineffective treatment and was only reversed after 1 year of appropriate anti-TB chemotherapy. Both succinate and IL-1ß were significantly associated with proinflammatory lipid signaling, including increases in the products of phospholipase A2, increased arachidonic acid formation, and metabolism of arachidonic acid to proinflammatory eicosanoids. Together, these results indicate that decreased itaconate and accumulation of succinate and other TCA cycle intermediates is associated with IL-1ß-mediated proinflammatory eicosanoid signaling in pulmonary TB disease. These findings support host metabolic remodeling as a key driver of pathologic inflammation in human TB disease.


Subject(s)
Citric Acid Cycle/physiology , Inflammation/metabolism , Signal Transduction/physiology , Tuberculosis, Pulmonary/metabolism , Humans
7.
Sci Rep ; 11(1): 14903, 2021 07 21.
Article in English | MEDLINE | ID: covidwho-1320242

ABSTRACT

The impact of repeated sample collection on COVID-19 test performance is unknown. The FDA and CDC currently recommend the primary collection of diagnostic samples to minimize the perceived risk of false-negative findings. We therefore evaluated the association between repeated sample collection and test performance among 325 symptomatic patients undergoing COVID-19 testing in Atlanta, GA. High concordance was found between consecutively collected mid-turbinate samples with both molecular (n = 74, 100% concordance) and antigen-based (n = 147, 97% concordance, kappa = 0.95, CI = 0.88-1.00) diagnostic assays. Repeated sample collection does not decrease COVID-19 test performance, demonstrating that multiple samples can be collected for assay validation and clinical diagnosis.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Turbinates/virology
8.
Sci Rep ; 11(1): 14604, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1315611

ABSTRACT

While there has been significant progress in the development of rapid COVID-19 diagnostics, as the pandemic unfolds, new challenges have emerged, including whether these technologies can reliably detect the more infectious variants of concern and be viably deployed in non-clinical settings as "self-tests". Multidisciplinary evaluation of the Abbott BinaxNOW COVID-19 Ag Card (BinaxNOW, a widely used rapid antigen test, included limit of detection, variant detection, test performance across different age-groups, and usability with self/caregiver-administration. While BinaxNOW detected the highly infectious variants, B.1.1.7 (Alpha) first identified in the UK, B.1.351 (Beta) first identified in South Africa, P.1 (Gamma) first identified in Brazil, B.1.617.2 (Delta) first identified in India and B.1.2, a non-VOC, test sensitivity decreased with decreasing viral loads. Moreover, BinaxNOW sensitivity trended lower when devices were performed by patients/caregivers themselves compared to trained clinical staff, despite universally high usability assessments following self/caregiver-administration among different age groups. Overall, these data indicate that while BinaxNOW accurately detects the new viral variants, as rapid COVID-19 tests enter the home, their already lower sensitivities compared to RT-PCR may decrease even more due to user error.


Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , Point-of-Care Systems , Self-Testing , Humans , Limit of Detection , SARS-CoV-2 , Sensitivity and Specificity
9.
Clin Infect Dis ; 72(7): 1244-1246, 2021 04 08.
Article in English | MEDLINE | ID: covidwho-693275

ABSTRACT

Among 283 symptomatic healthcare personnel (HCP) tested for SARS-CoV-2, 51 (18%) were positive. Among those 51 HCP, self reported loss of smell and taste were present in 51% and 52.9%, respectively, with either present in 60.8%. These symptoms had high specificity (93% each, 96% for either) for a positive SARS-CoV-2 test.


Subject(s)
COVID-19 , Coronavirus , Olfaction Disorders , Anosmia , Delivery of Health Care , Humans , SARS-CoV-2 , Taste
SELECTION OF CITATIONS
SEARCH DETAIL